Endpoint estimates for bilinear pseudodifferential operators with symbol in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>B</mml:mi><mml:msubsup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msubsup></mml:math>
نویسندگان
چکیده
In this paper we establish some endpoint estimates for bilinear pseudodifferential operators with symbol in the class BS1,1m, involving space of functions local bounded mean oscillation bmo(Rn). As a consequence also obtain an estimate Kato-Ponce type.
منابع مشابه
Sobolev Space Estimates and Symbolic Calculus for Bilinear Pseudodifferential Operators
Bilinear operators are investigated in the context of Sobolev spaces and various techniques useful in the study of their boundedness properties are developed. In particular, several classes of symbols for bilinear operators beyond the so called CoifmanMeyer class are considered. Some of the Sobolev space estimates obtained apply to both the bilinear Hilbert transform and its singular multiplier...
متن کاملBilinear Operators with Non-smooth Symbol, I
This paper proves the Lp-boundedness of general bilinear operators associated to a symbol or multiplier which need not be smooth. The Main Theorem establishes a general result for multipliers that are allowed to have singularities along the edges of a cone as well as possibly at its vertex. It thus unifies ealier results of Coifman-Meyer for smooth multipliers and ones, such the Bilinear Hilber...
متن کاملOn a Class of Bilinear Pseudodifferential Operators
We provide a direct proof for the boundedness of pseudodifferential operators with symbols in the bilinear Hörmander class BS 1,δ, 0 ≤ δ < 1. The proof uses a reduction to bilinear elementary symbols and Littlewood-Paley theory.
متن کاملPseudodifferential operators and weighted normed symbol spaces
In this work we study some general classes of pseudodifferential operators where the classes of symbols are defined in terms of phase space estimates. Résumé On étudie des classes générales d’opérateurs pseudodifférentiels dont les classes de symboles sont définis en termes d’éstimations dans l’espace de phase.
متن کاملDispersive Estimates for Principally Normal Pseudodifferential Operators
The aim of these notes is to describe some recent results concerning dispersive estimates for principally normal pseudodifferential operators. The main motivation for this comes from unique continuation problems. Such estimates can be used to prove L Carleman inequalities, which in turn yield unique continuation results for various partial differential operators with rough potentials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126453